تبدیل دی اکسید کربن به سوخت های چند کربنی

تبدیل دی اکسید کربن به سوخت های چند کربنی به کمک یک افزودنی جدید!

شیمی‌دان‌ها به روشی جدید و پربازده برای ساخت سوخت‌های پایه کربن از دی اکسید کربن، دست یافته‌اند. در واکنش‌های شیمیایی انجام شده در آزمایشگاه، یک گروه پژوهشی یک افزودنی جدید را شناسایی کرده‌اند که کمک به تبدیل دی اکسید کربن به سوخت های چند کربنی می‌کند که این امر گامی رو به جلو در جهت ساخت سوخت‌های مایع تجدیدپذیر که از مشتقات نفت و زغال سنگ نیستند، می‌باشد.

——————————————————–

ترجمه از گروه ترجمه ایران مواد

حرفه ای ترین تیم ترجمه مهندسی مواد کشور

www.iran-mavad.com/trans

———————————————————

جان پترز، پروفسور شیمی در Caltech و رئیس انستیتوی Resnick که سرپرست این تیم پژوهشی بوده است، در این باره گفت: “نتایج، بسیار شوکه‌کننده بوده است. معمولا در این گونه واکنش‌ها با CO2، شما محصولاتی مانند متان و هیدروژن را می‌بینید. در این مورد، واکنش بسیار انتخابگرانه بوده و ۸۰% محصولات این واکنش، سوخت های چند کربنی مطلوب مانند اتیلن، اتانول و پروپانول بوده است و تنها ۲۰% آن متان و هیدروژن بوده است.”

سوخت های چند کربنی مطلوب‌تر می‌باشد، چراکه این سوخت‌ها تمایل به مایع بودن دارند و در ذخیره‌ی سوخت‌های مایع، انرژی بیشتری در یک حجم ثابت نسبت به سوخت‌های گازی ذخیره می‌شود. برای مثال، پروپانول که مایع بوده و حاوی سه اتم کربن می‌باشد، انرژی بیش‌تری را از متان که گازی بوده و یک اتم کربن دارد، ذخیره می‌کند.

برای یافتن ترکیب ایده‌آل برای ساخت سوخت های چند کربنی، ترکیب‌های مختلف شیمیایی را در آزمایشگاه‌ها انجام دادند. آن‌ها از یک محلول آبی و یک الکترود مس استفاده کردند که به عنوان کاتالیست و منبع انرژی به جای خورشید می‌باشد. در طی این آزمایشات، CO2 به محلول افزوده شد، همزمان با آن نیز گروهی از مولکول‌های آلی به نام arylpyridinium را افزوده که منجر به رسوب لایه‌ای نازک روی الکترود می‌شود. این لایه‌ی نازک، به دلایلی که هنوز مشخص نیست، به شدت واکنش ساخت سوخت را بهبود بخشیده و منجر به تولید بسیار بیشتر سوخت‌های مایع اتانول، اتیلن و پروپانول می‌گردد.

Agapie یکی از محققین این پژوهش گفت: “ساخت هیدروژن تحت این شرایط، بسیار ساده می‌باشد، و تولید هیدروژن از این واکنش‌ها بسیار مشاهده است، اما ما علاقمند به سوخت‌های مایع دارای پیوندهای کربن – کربن با دانسیته انرژی بالا هستیم که دقیقا در این پژوهش ما آن را به دست آوردیم.”

گام بعدی، درک تغییر ایجاد شده توسط این افزودنی‌ها در این واکنش‌ها می‌باشد. محققین همچنین برای بررسی اثر افزودنی‌های مشابه در محصولات این واکنش‌ها، برنامه‌ریزی کرده‌اند. نهایتا، این اطلاعات ما را به سمت سوخت‌های فرعی پربازده به دست آمده از نور خورشید، CO2 و آب سوق می‌دهد.

در نهایت Peters گفت: “طبیعت انرژی خورشید را طی سالیان دراز و با فرآیندی طولانی که میلیون‌ها سال به طول می‌انجامد، به شکل نفت ذخیره می‌سازد. شیمی‌دان‌ها به دنبال این هستند که چگونه می‌توان این فرآیند را بسیار سریع‌تر انجام داد.”

مترجم : امیر اشجاری


 

New additive helps researchers more selectively convert carbon dioxide to multicarbon fuels

 

New carbon dioxide experiments may lead to artificial, renewable fuels, outlines new research. In chemical reactions performed in the lab, a research team has identified a new additive that helps selectively convert carbon dioxide into fuels containing multiple carbon atoms -— a step toward ultimately making renewable liquid fuels that are not derived from coal or oil.

Chemists have figured out a new, more efficient way to create carbon-based fuels from carbon dioxide (CO2). In chemical reactions performed in the lab, a Caltech team has identified a new additive that helps selectively convert CO2 into fuels containing multiple carbon atoms — a step toward ultimately making renewable liquid fuels that are not derived from coal or oil.

“The results were quite shocking,” says Jonas Peters, Bren Professor of Chemistry at Caltech and director of the Resnick Sustainability Institute, who jointly led the research in collaboration with Theodor Agapie, professor of chemistry at Caltech. “Usually, in these types of reactions with CO2, you see a lot of by-products like methane and hydrogen. In this case, the reaction was highly selective for the more desirable fuels that contain multiple carbons — such as ethylene, ethanol, and propanol. We saw an 80 percent conversion to these multi-carbon fuel products, with only 20 percent or so going into hydrogen and methane.”

Fuels with multiple carbon atoms are more desirable because they tend to be liquid — and liquid fuels store more energy per volume than gaseous ones. For instance, propanol, which is liquid and contains three carbon atoms, stores more energy than methane, which is a gas and only has one carbon atom.

The goal of chemists like Peters, Agapie, and their colleagues working at the Joint Center for Artificial Photosynthesis (JCAP), a U. S. Department of Energy (DOE) Energy Innovation Hub, is to artificially create multi-carbon liquid transportation fuels using the widely available ingredients of sunlight, water, and CO2 . The new research, published July 21 in the ACS Central Science, and funded by JCAP, is a step toward that goal.

The study’s research was conducted by Caltech postdoctoral scholars Ruud Kortlever and Hsiang-Yun Chen and former postdoc Zhiji Han.

To find the ideal combination for making the multi-carbon fuels, the team experimented with a mix of different chemicals in the lab. They used an aqueous solution and a copper electrode, which served as both a catalyst and source of energy in place of the sun. The group added CO2 to the solution, as well as a class of organic molecules called N-substituted arylpyridiniums, which formed a very thin deposit on the electrode. This film, for reasons that are not understood yet, dramatically improved the fuel-making reaction, selectively producing the desirable chemicals ethanol, ethylene, and propanol.

“It’s easy to make hydrogen under these conditions, so usually we see a lot of it,” says Agapie. “But we want to disfavor the hydrogen production and favor high-energy density liquid fuels with carbon-carbon bonds, which is exactly what we get in our experiments.”

One next step is to figure out how the additives are enhancing the reaction. The researchers also plan to test similar additives to see if they can further improve the selectivity for the desired fuels. Ultimately, this information may help lead to alternate fuels made efficiently from sunlight, CO2, and water — instead of oil.

“Nature has stored solar energy in the form of oil over a long period of earth history via a process that takes millions of years,” says Peters. “Chemists would like to figure out how to do this much faster.

Jounal Reference

www.sciencedaily.com

آیا مقاله برای شما مفید بود ؟
5/
0
0 نظر ثبت شده

مطالب مرتبط

دیدگاه کاربران